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Abstract

Fuzzy samples contain measurements that are only partially associated with
their underlying population. This paper offers numerical indices for the difference
of population distributions approximated over fuzzy samples. Formulae for the
Kolmogorov-Smirnov (KS) and Kuiper (Ku) statistics in the case of fuzzy
empirical cumulative distribution functions are given. It proves that the suprema
in these criteria’ standard formulae convert to maxima in the analyzed case, which
substantially facilitates calculations. As a by-product, the paper also proves
formulae for KS and Ku in the case of rigid samples (that are often used but never
properly formalized). If Bootstrap and Monte Carlo simulations are employed to
construct the distribution of KS and Ku and find the pvalue of the tests, then the
quick and reliable calculation of the test statistics in each pseudo reality are of
great importance. The derived formula for KS and Ku improve the quality of the
simulation itself.
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1. Introduction

In various cases of data collection one may identify situations, where
measurements in a data sample are only partially associated with their underlying
population. The presence of such data imposes challenges to any statistical procedure of
comparison of distributions or numerical characteristics of variables. The work [Nikolova
et al., 2015] presents procedures to test the identity of distributions on the basis of one
key so called fuzzy samples. In the proposed definition, the authors use two 1D (one-
dimensional) samples of a continuous parameter that contain respectively n; and n»
observations. The fuzziness of the samples is based on the assumption that the
observations z, and z; of each respective sample belong to two populations — Population
1 and Population 2 — with a given degree of membership respectively i and z} . In that

way, the two fuzzy samples are presented as:
7! ={(z,l,,ull),(z%,/jé),...,(zil,ﬂ,]”)} (1.1)

22 =((af ) (F. ) (5, )| (12)

In the presence of fuzzy samples, one statistical procedure to perform is to define
whether the two samples were drawn from two populations with the same characteristics.

Some examples of where fuzzy samples apply are given in [Viertl, 2011]. They
show that the degree of membership may have different interpretations depending on the
case analyzed. For example, in comparing subpopulations from two different populations,
the membership of an observation from that subpopulation is calculated from a
classificator. The resulting calculation has a degree of certainty that can be interpreted as
a degree of membership to the subpopulation. An area, where problems with fuzzy
samples arise is also medical research, where a given parameter may be measured in
multiple spatial points for the same object (e.g. measurements in in different sections of
an object, or measurement of the same section in different moment of time). Then, each
measurement may be given a degree of membership, e.g. equal proportional weight so
that to provide equal importance to each of the measured objects.

Let us denote with CDF and CDF, any sample distribution function constructed
on the data points in samples (1.1) and (1.2). In the presence of a rigid data sample, a
common procedure to construct a distribution of the underlying random variable is to
approximate the cumulative distribution function (CDF) by the so-called empirical
distribution function (ECDF). The only assumption of this procedure is that the data
points in the sample are independent and identically distributed (i.i.d.). ECDF assumes
that the r.v. is discrete with possible values coinciding with the observations in the rigid
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sample. The assigned probability to each value is its relative frequency in the sample. If
fuzzy samples are present, then the idea and form of ECDF can be generalized to the
fuzzy empirical distribution function (FECDF):

FECDF, (z) = s Lk up ., for ze (—oo;+) (1.3)
k k=1
Z

=

IA

z

3
&

ut Zzl,u,g , for ze (—o0;+0) (1.4)
P

FECDF, (z) =

N
WM

Z

Similar to the ECDF approximations, the sample approximations (1.3) and (1.4)
use no assumptions for the type of the approximated CDFs except for the standard i.i.d.
assumption.

Comparing two population distributions (for equality of distributions as a whole, or
for equality of any of their numerical characteristics) usually brings down to the use of a
given test statistic S. When testing the equality of two population distributions, S is an
estimator of the difference between two sample approximations of CDF under the
assumption that their underlying populations had equal continuous distributions. S is a
random variable that tends to increase when the difference between the sample
distributions CDF; and CDF’ increases. A statistical test is adopted with null hypothesis
(Ho): “The continuous distributions of the two populations are equal” and alternative
hypothesis (H,): “The continuous distributions of the two populations are different”. The
DPvaive Of the test may be calculated if the conditional distribution of the test statistic under
a true null hypothesis was available.

There are three major groups of statistics that apply to the test of identity of two
continuous distributions. The work [Chernobai, Rachev, Fabozzi, 2014] discusses the so-
called quadratic class, along with some of its most typical representatives, such as the
quadratic Anderson-Darling statistic and the Cramér—von Mises statistic. Another set of
measures, with its very wide spread metrics, namely the Mann-Whitney U statistic and
the Wilcoxon 7 statistic [Groebner et al., 2011] form the so-called rank class. By far the
wide spread class is the supremum class [Chernobai, Rachev, Fabozzi, 2014]. A popular
test statistic that belongs to this class is the Kolmogorov — Smirnov (KS) test statistic
[Bohm, Hornik, 2010]. It is calculated as the supremum of the absolute value of the
difference between the two available sample CDFs:

KS = sz:p(’CDFl (z)-CDFR (2)) (1.5)
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Another test statistic that exceeds the qualities of the K is the Kuiper statistic (Ku)
[Lemeshko, Gorbunova, 2013a]. It is the sum of the supremum of the positive difference
and the supremum of the negative difference between two approximations of CDF on the
available samples:

Ku = sup(CDF, (z) - CDF, (z)) + szztp(CDFz (z) - CDF, (z)) (1.6)

z

The Ku is an improved modification of the KS. Its sensitivity to deviations is equal
for all values of the underlying variable z. It means that the Ku statistic sensitivity at the
tails is the same as in the middle of the range of z, which also makes it invariant to cyclic
transformations of the variable. Unlike it, the KS statistic’s values vary and are difficult to
identify at the ends of the interval of z [Jin et al., 2015].

In the general case of continuous CDFs, it is not possible to investigate the nature
of the supremum so that to make proper calculations of (1.5) and (1.6) precisely and with
certainty. In (1.5) and in (1.6), we need to solve two continuous optimization problems,
which are further complicated by the fact that they require to find suprema, not maxima.
Any numerical solution of this problem is uncertain and time consuming. It is not a
coincidence that even sophisticated statistical text do replace suprema with maxima with
no proper justification [Press et al., 2007, p. 732, p. 737].

In this paper, we will prove that if we use the FECDFs in (1.3) and (1.4) for the
sample distributions CDF; and CDF; in (1.5) and (1.6), then the two criteria can be
simplified to:

KS =

. . (FECDF, (z4) - FECDF, (=} )) 7
max (FECDF2 (%) - FECDR (2} ))

Ku =

- max (FECDFI (z4)- FECDF, (2} )) + (1.8)

+ max (FECDF2 (%) - FECDF,(} ))

By doing so, the two continuous optimization problems in (1.5) may be replaced
with two optimizations over discrete sets with power n; and »; in (1.7). Similarly, the two
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continuous optimization problems in (1.6) may be replaced with two optimizations over
discrete sets with power »; and », in (1.8). The discrete optimization problems in (1.7)
and (1.8) can be calculated quickly and easily and the result will be guaranteed.

Substituting (1.3), (1.4) in (1.7) and (1.8), we can arrive at the value of KS and Ku
directly from the observations in the samples without the need to construct the FECDFs.

KS =
i’ll l ﬂl l I12 2 ﬂz 2
_max 2 Mk |2 e ] 2
=12,m | =l k=1 =1 k=1
7z %<z (1.9)
= max
ﬂ2 2 l’l2 2 ﬂl l Vll l
omax |3 ug 2 Mkt 2tk Hi
i=12,..m | k=) k=1 k=1 k=1
z,% SZIZ zi Szlz z/l‘, Sz,l
n 1 n 1 5 n
Ku= max Me | 2 M= 2 M| 2 M|+
=L20m | fm) k=1 k=1 k=1
1 1 2.1
z,,Sz/ szz‘
(1.10)
< 2 @ 2. 1 /<0
+ max | > 2 oMt X om | 2
i=12,m | =] k=1 k=1 k=1
z,? 52,2 ZAZ Sziz —,{ Sz,v2

As a result, the use of (1.9) and (1.10) allows to bring down the calculation of XS
and Ku statistics to a finite number of FECDF calculations in given data points.

2. General outline of the proof

The main result of the paper in given in section 5. It contains the theorem for
calculation of Kolmogorov-Smirnov and Kuiper criteria over fuzzy samples. It proves
that: a) both criteria always exist; b) both criteria belong to the interval [0; 1]; c) the
suprema in (1.5) and (1.6) are maxima; d) the criteria can be calculated using (1.9) and
(1.10) in not more than (n;+ n2) points.

To prove this theorem, we use two lemmas that could also exist separately and

have their importance.

The first is a lemma for the bounded suprema, given in section 3. It proves that for
arbitrary distribution functions CDF; and CDF5, there always exist three functionals 7,
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F>, and F, that are non-negative and not greater than 1. F) is the supremum of the
difference of CDF and CDF>5. F; is the supremum of the difference of CDF, and CDF.
Fis the sum of suprema of the two differences of CDF and CDF>.

The second is a lemma for the discrete maximum, given in section 4. It treats some
properties of the function D, which is the difference between: a) FECDFs as in (1.3),
derived from Fuzzy Sample 1; b) an arbitrary distribution function. The lemma proves
that the function D has a global non-negative maximum, not higher than 1.

A corollary of the proven theorem for calculation of the Kolmogorov-Smirnov and
Kuiper criteria over rigid samples is proven in section 6. In that section, the results of the
theorem are trivially applied on samples, where all degrees of membership are equal to 1,
which makes the samples rigid:

7! :{le,zé,...,z,ln} 2.1
e ={le,2§,...,252} (2.2)

In that case, FECDFs are replaced by ECDFs:

ECDF,(z)= i n, for ze(—oo;+x) (2.3)

l
%S

ECDF, (z) = l/n2 , for ze (—o0;+x0) (2.4)

k
2
2

N

L

The corollary from section 6 proves that for the Kolmogorov-Smirnov and Kuiper
criteria calculated over rigid samples: a) both criteria always exist; b) both criteria belong
to the interval [0; 1]; ¢) the suprema in (1.5) and (1.6) are maxima; d) the criteria can be
calculated using (2.5) and (2.6) in not more than (7;+ 7,) points:

n
KS =maxq max | > 1 [m— n |, n — n (2.5)
i=12,..,m k=1 i=1 ,,,.,nz —
z/{,S z} z/ <z ZI. <z S
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ny ny ny n
Ku= max | X 1 /m— X 1 [my |+ max | D1 [m— > 1 /n (2.6)
i=12,..,m k=1 k=1 i=12,..,m k=1 k=1
z}c < z,l z/% Sz‘l zf Szfz z}_ Sz,2

In what follows, section 3 provides the setup and proof of a lemma for the bounded
suprema. Section 4 presents the setup and proof of the lemma for the discrete maximum.
Section 5 presents the setup and proof of the theorem for calculation of Kolmogorov-
Smirnov and Kuiper criteria over fuzzy samples, whereas the Corollary for the calculation
of Kolmogorov-Smirnov and Kuiper criteria over fuzzy samples is given in section 6.

3. Lemma for the bounded suprema

Setup of the lemma for the bounded suprema
Let CDFi(z) be a real function of a numeric argument, defined for any real z, with
the following properties:

e (CDFy(.) is increasing:

If z;>z,, then CDF](Z])Z CDF[(Zz) (31)

e When z approaches —o, the limit of CDF(z) exists and is equal to 0:

lim CDF(z)=0 (3.2)

Z>—0

e  When z approaches +o, the limit of CDF(z) exists and equals to 1:

lim CDF(z)=1 (3.3)

Z—>+0

Let CDF»(z) be a real function of a numeric argument, defined for any real z, with
the following properties:

e (CDF)y(.) is increasing:

IfZ|>Zz, then CDFz(Z|)2 CDFz(Zz) (3 4)
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e  When z approaches —o, the limit of CDF>(z) exists and is equal to 0:

lim CDF,(z)=0 (3.5)

Z——D0
e  When z approaches +w, the limit of CDF5(z) exists and is equal to 1:

lim CDF, (z):l (3.6)

Z—>+0

Then:

e the functional F; of the functions CDF\(.) and CDF>(.), defined as the
supremum of the difference of CDFi(.) and CDF(.), always exists, is non-
negative and is not greater than 1:

there exists ; such that F, (CDF,CDF ;) = sup(CDF, - CDF ;) € [0:1] (3.7
R

In (3.7), and throughout the section, the set of real numbers is denoted as R.

e the functional F, of the functions CDF(.) and CDF>(.), defined as the
supremum of the difference of CDF>(.) and CDF(.), always exists, is non-
negative and is not greater than 1:

there exists F, such that £, (CDFI,CDFZ) = sup(CDFz —CDFl) € [O; 1] (3.8)
R

e the functional F of the functions CDF(.) and CDF(.), defined as the sum
of the suprema of the differences of those functions, always exists, is non-
negative and is not greater than 1:

there exists F such that

F(CDF,,CDF, )= (sup(CDFl — CDF, )+ sup(CDF, — CDF, )] e[0:1] (3.9)
R R

Proof of the lemma for the bounded suprema
1) Introduce auxiliary functions

Let fi(z) be a real function of a numeric argument, defined for each real z as a
difference between CDF(.) and CDF5(.):
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f1(2)=CDF,(z)-CDF,(z), forze R (3.10)

Let f5(z) be a real function of a numeric argument, defined for each real z, and the
difference of CDF»(.) and CDF(.) is:

f2(2)=CDF,(z)-CDF,(z)=-f,(z), forze R (B.11)

Let f(z) be a real function of a numeric argument, defined for each real ordered pair
(z1, z2), where the sum of the differences of CDF(.) and CDF(.) is:

f(21,2)=CDF\(z,)=CDF, (z,) + CDF, (z,) = CDF, (2,) = £ (1) + /2 (22)-
for(z, z,) e R? (3.12)

2) Proof of statement (3.7)
2.1) Bound of the function f(.) from above

4(2)
=CDF (z)-CDF,(z)  (according to (3.10))
<1-CDF,(z) (since CDF, (z)<1, according to (3.1) and (3.3))

<1-0 (since CDF, (z)>0, according to (3.4) and (3.5))

=1
It follows then that
fi(z)<1,forzeR (3.13)

2.2) Existence of the functional I
F(CDF,,CDF)

= sup(CDF, - CDF,) (according to the definition of Fin (3.7))
R

= szp(fl) (according to (3.10))
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= sup { fi(z)|ze R} (according to the definition for

supremum of a function [Apostol, 1981])

The set { A(2)|z eR} is a non-empty subset of real numbers, which is bounded

from above according to (3.13). According to the principle of continuity of real numbers,
such sets always have a supremum, which also is a real number [Royden, Fitzpatrick,
2010]. Then:

there exists £ such that

F,(CDF,,CDF, )= sz}ép(CDFl —CDF,)= sz;p(fl) =sup{f(z)|z R} (.14)

2.3) Upper bound of the supremum F;
According to (3.13), the upper bound of the function fi(.) is 1, and hence this is also
true for the set of real numbers { fi(z)|ze R} . According to (3.14), the supremum F) of the

function f1(.) always exists. According to the definition for supremum of a numerical set,
the supremum is the smallest upper bound of the set [Rudin, 1976]. Therefore:

F,(CDR,CDF,) = sup(CDF, - CDF, ) = sup{ f; ()|z e R} <1 (3.15)
R

2.4) Lower bound of the supremum F;

According to (3.14), the supremum F of the function fi(.) always exists. Let us
assume that 7 is a negative number a:

F\(CDF,,CDF, ) = sup(CDF, = CDF, ) = sup(f; ) = a <0 (3.16)
R R

The limit of £i(.) in +o0 may be easily calculated:

lim f, (z)

Z—>+w

= lim (CDFI (z)-CDF, (z)) (according to (3.10))

Z—>+0
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= lim CDF,(z)- lim CDF,(z) (according to the theorem for the limit
Z—>+0

Z—>+w0

of differences [Stewart, 2016] )
=1-1 (according to (3.3) and (3.6))

It follows that:

lim fl(z)=0 (3.17)

2400

From (3.17) and from the definition of function limit in +o [Thomas, Weir, Hass,
2014] it follows that if we select & =—a/2 >0, then there exists z_ such that

fi(2)=|f(z)-0<e=-a/2 forall z>z" (3.18)
AG)=14()-0)

Since (z+1)>z", from (3.18) it follows that:

a/2=—=(-a/2)< fi(z*+1)<-a/2 (3.19)
Then:
h (z * +1)
>a/2 (according to (3.19))
>a (since a is negative according to the assumption (3.16))
=sup(f7) (according to the assumption (3.16))
R
> fi(z*+1) (the supremum of a function is not lower

than any arbitrary value of the function)

It follows that f(z*+1)>f(z*+1), which is a contradiction. Hence, the

assumption (3.16) is not correct. Since according to (3.14) the supremum F; of fi(.)
always exists, then F' is a non-negative number a:

279
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FI(CDFI,CDFZ):sup(CDFI—CDFZ):Sup(fl):aZO (3.20)
R R

2.5) Generalization for the supremum F

Taking into account (3.14), (3.15) and (3.20) it follows that (3.7) is correct:

there exists £ such that 5 (CDF,CDF; ) = sup(CDF, — CDF, ) [0; 1]
R

which we needed to prove.

3) Proof of statement (3.8)
3.1) Bound of the function f>(.) from above

£(2)

=CDF, (z) - CDF,(z) (according to (3.11))

<1-CDF(z) (since CDF,(z) <1, according to (3.4) and (3.6))
<1-0 (since CDF(z)20, according to (3.1) and (3.2))
=1

It follows that

fr(z)<1,forzeR (3.21)

3.2) Existence of the functional F>
F,(CDR,CDF,)

= sup(CDF, — CDF, ) (according to the definition of F»in (3.8))
R

=sup( ;) (according to (3.11))
R

= sup { f(2)|ze R} (according to the definition of supremum
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of a function [Apostol, 1981])

The set { b (z)|z eR} is non-empty subset of the real numbers, which is bounded

from above according to (3.21). According to the principle for continuity of real numbers,
such sets always have a supremum, which is also a real number [Royden, Fitzpatrick,
2010]. Hence:

there exists F, such that
F, (CDF,CDFZ) = sup(CDFz —CDH ) = sup(fz) = sup{fz (z)‘z € R}
R R

(3.22)
3.3) Upper bound of the supremum F>

According to (3.21), the upper limit of the function f3(.) is 1, and hence this is also
true for the set of real numbers {fz (z)|z eR}. According to (3.22), the supremum F; of

the function £(.) always exists. According to the definition for supremum of a numerical
set, the supremum is the smallest upper bound of the set [Rudin, 1976]. Hence:

F,(CDF,,CDF, ) = sup(CDF, — CDF,) = sup{ f; (z)|z € R} <1 (3.23)
R

3.4) Lower bound of the supremum F>

According to (3.22), the supremum F> of the function f(.) always exists. Let us
assume that F is a negative number a:

FZ(CDF,CDFZ):sup(CDFZ—CDFI):sup(fz):a<0 (3.24)
R R

The limit of £5(.) in +o0 may be easily found to be:

Jim 1:(2)

= ﬁﬂo (CDFZ (z)-CDFR (z)) (according to (3.11))

= lim CDF,(z)— lim CDF,(z) (according to the theorem for the limit
Z—>+00 Z—>+0

of a differences [Stewart, 2016])
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=1-1 (according to (3.3) and (3.6))

It follows that

lim f,(z)=0 (3.25)

Z—>+0

From (3.25) and from the definition for the limit of a function in 4+ [Thomas,
Weir, Hass, 2014] it follows that if you choose £ =—a/2 >0, then there exists z", such

that

‘fz (z)‘z‘fz (z)—O‘ <g=—a/2forall 2>z (3.26)
Since (z+1)>z", from (3.26) it follows that:

a/2=—(-a/2)< fo(z*+1)<—-a/2forall z>z° (3.27)
Then:
5 (z * +1)
>a/?2 (according to (3.27))
>q (since a is negative according to the assumption (3.24))
= sup( fz) (according to the assumption (3.24))

R

> fo(z*+1) (the supremum of the function is not smaller than

an arbitrary value of the function)

It follows that f,(z*+1)> f,(z*+1) , which is a contradiction. Hence, the

assumption (3.24) is not correct. Since according to (3.22), the supremum F> of the
function f>(.) always exists, then F is a non-negative number a:
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F, (CDF,,CDF, ) = sup(CDF, — CDF, ) = sup( f,) =a >0 (3.28)
R R

3.5) Generalization for the supremum F

Taking into account (3.22), (3.23) and (3.28) we can say that (3.8) is correct:

there exists F> such that /, (CDF,CDF, ) = sup(CDF, - CDF; ) [0;1]
R

which we had to prove.

4) Proof of statement (3.9)
4.1) Bound of the function f{.,.) above

Let z; be an arbitrary real value in the interval (—co; +oo). To find the upper bound

of the real function f{.,.) defined in (3.12), we have to analyse three cases.

Case 1: z, €(z,+)

7(z.22)

=CDF (7)) - CDF,(z)+ CDF,(z,)~CDF (z,)  (according to (3.12))
<CDF;(z)~CDF,(z)+1-CDE(z,) (since CDF,(z,)<1,

according to (3.4) and (3.6))
< CDF,(z)~CDF, (z)+1-CDF (z) (since CDF (z,)>CDF (z),

according to (3.1) and z>>z)

<-0+1 (since CDF;(z)=0,

according to (3.4) and (3.5))

It follows that

283



284

N. Nikolova, S. Ivanova, C. Chin and K. Tenekedjiev

f(21,2,) =CDF,(z,) = CDF; (z,) + CDF, (z,) - CDF (z;) <1,

forz; e (—oo; +0) and z, € (Zl ; +oo) (3.29)

Case 2: z, € (—0;7,)
f(z2.2)

=CDF () - CDF,(z )+ CDF,(z,)-CDF (z,)  (according to (3.12))
=CDF, () - CDF, () + CDF, (z,) -0 (since CDF(z,)=0,

according to (3.1) and (3.3))
= CDF; ()~ CDF, (z) + CDFy (z) (since CDF;(z)2CDF (z,),

according to (3.4) and z,<z;)

<1 (since CDF;(z)<1,

according to (3.1) and (3.3))

It follows that

f(21,2,) =CDF,(z) - CDF, (z,) + CDF, (z,) - CDF (z,) <1,
for z; € (—oo;+oo) and z, e(—oo;zl) (3.30)

Case 3: 2=z,

f(z.2)

=7 (z.2) (since z,=z1)

= CDF,(z,) = CDF, (z) + CDF; (2 ) - CDF () (according to (3.12))
=0<I

It follows that:
f(zl,zz)=CDFI(ZI)—CDFz(Zl)+CDFZ (22)—CDF1(22)=0S1 ,

for z; € (—o;+%) and z; = 7, (3.31)
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If we combine the results (3.29), (3.30) and (3.31) from the three cases, it shows
that 1 is the upper bound of the function f{.,.):

f(zl,zz)z CDF, (zl)—CDFz (zl)+CDFZ (Zz)—CDFi (Zz)Sl, for(zl, 22)6 R? (3.32)

4.2) Existence of the functional F
F(CDF,,CDF,)

= sup(CDF, — CDF, ) + sup(CDF, — CDF, ) (according to the definition (3.9) of F)
R R

= F,(CDR,CDF, ) + F5 (CDF,,CDF, ) (according to the proven (3.7) and (3.8))

Then
F(CDR,CDF,) = F,(CDF,CDF, ) + F, (CDF,,CDF,) (3.33)

According to the proven (3.7) and (3.8), the suprema F and F> exist for arbitrary
functions CDF(.) and CDF>(.) and correspond to conditions (3.1) - (3.6). Since according
to (3.33), the functional F(CDF\, CDF>) is a sum of suprema F; and F>, then the
functional F’ exists under the same conditions:

there exists £ such that F(CDF,CDFz) =
= (sup(CDFl —CDF, )+ sup(CDF, — CDF, )) = (3.34)
R R

= F(CDR,CDF,)+ F, (CDF,,CDF,)

4.3) Connection between the functional I and the function f{.,.)

The supremum of the real numerical function f{.,.) (if it exists) may be replaced
with the supremum of a real numerical set according to the definition for supremum of a
function [Apostol, 1981]:

sup(f):sup{f(zl,zz)‘(zl,zz)eRz} (3.35)

R?



286 N. Nikolova, S. Ivanova, C. Chin and K. Tenekedjiev

The set { f (zl,zz)‘(z,,zz)e RZ} is a non-empty subset of the set of real numbers,

which is bounded from above according to (3.32). According to the principle for
continuity of real numbers, such sets always have a supremum, which is also a real
number [Royden, Fitzpatrick, 2010]. Then, taking into account (3.12):

there exists 7~ such that F~ = sup(f)= sup{f(zl,zz)‘(zl,zz)e Rz}
R?
(3.36)
= Sup{fl (Zl)+f2 (zz)‘(zl,zz) € Rz} = sup(fl + fz)
R?

According to the proven statement (3.7), the functional F](CDF ,CDFZ) is the

supremum of the real numerical function fi(.), defined in (3.10). According to the
definition for supremum of a function [Apostol, 1981], for each & >0 the following

dependencies apply:
for every z; € R, FI(CDFI,CDFZ)Zfl(zl) (3.37)
there exists z; € R such that F; (CDF;,CDF, ) - & < f; (z,*) (3.38)

According to the proven statement (3.8) the functional F, (CDFl,CDFz) is the

supremum of the real numerical function f(.) defined in (3.11). According to the
definition for supremum of the function [Apostol, 1981], for each &, > 0the following

dependencies apply:
foreveryz, eR, F, (CDFI,CDFZ) > f (22) (3.39)
there exists z; € R such that , (CDF,CDF,) - &, < f, (z;) (3.40)

After adding the inequalities (3.37) and (3.39) it follows that the sum of the
functionals (3.10) and (3.11) is an upper bound of the real numerical function f(.,.)
defined in (3.12):

for every (z,,2,) e R?,

(3.41)
F(CDR,CDF,)+ F,(CDF,CDR) 2 fi(z)+ f,(2) = f(21.22)
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After adding the inequalities (3.38) and (3.40) and substituting & =(g +¢&,) >0 it

follows that no real number, smaller than the sum of the functionals (3.10) and (3.11) is
the upper bound of the real numerical function f{.,.) defined in (3.12):

there exists (zf,zj ) € R? such that
’ (3.42)

1’772

F(CDR,CDF,) + F, (CDR,CDF,) - < fi(z) )+ /(20 ) = £ (.7})

From (3.41) and (3.42) it follows that the sum of the functionals (3.10) and (3.11)
is the smallest upper bound of the function £{.,.), which is the supremum of £{.,.) according
to the definition for supremum of a function [Apostol, 1981]:

sup(f) = sup(f; + /) = K (CDF,,CDF, ) + F, (CDF,,CDF, (3.43)
R?

R?

From the comparison of (3.34), (3.36) and (3.43) it follows that the functional
and F’coincide and are equal to the supremum of real numerical function £.,.) defined in
(3.12):

F(CDR,CDF,)=F"(CDF,CDF, )= F, (CDF,,CDF, ) + F, (CDF,,CDF, ) = sup( 1) (3.44)

R?

4.4) Upper bound of the supremum F

According to (3.32), the upper bound of the function £.) is 1. According to (3.34)
and (3.44), the supremum F' of the function f{.) always exists. According to the definition
for supremum of a numerical function, the supremum is the smallest upper bound of the
function [Apostol, 1981]. Hence

F(CDF,,CDF,) = (sup(CDFl —CDF, )+ sup(CDF, - CDF, )] <1 (3.45)
R R

4.5) Lower bound of the supremum F
F(CDF,,CDF,)

= sup () (according to (3.44))

R?
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> f(z1.2) (the supremum is not less than any value of the function)
=CDF, (z)-CDF,(z)+CDF,(z)-CDF(z)  (according to (3.12))

=0

It follows that
F(CDR,CDF,) = (sup(CDFl — CDF, )+ sup(CDF, - CDF, )) >0 (3.46)
R R

4.6) Generalization for the supremum F

Taking into account (3.34), (3.45) and (3.46) we can say that (3.9) is correct:
there exists £, such that F (CDF,,CDF, ) = (sup(CDFl —CDF, )+ sup(CDF, — CDF, )) e[0:1]
R R

which we needed to prove.

4. Lemma for the discrete maximum
Setup of the lemma for the discrete maximum

Let Z be a sample of n observations from a given population of a one-dimensional
random variable, and the degree of membership to that population of the i-th observation

is g, €(0,1] :

Z={(10pa) (220 )2t} @)

Let the distribution of the random variable be approximated on the sample data
according to a fuzzy empirical distribution function (FECDF) as follows:

k=1 k=1
zp<z

FECDF(z)= ¥ ,uk/ﬁ:,uk,forzeR 4.2)
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In (4.2), and throughout the section, the set of real numbers is denoted as R.

Let F{(z) be a real function of a numeric argument, defined for each real z with the
following properties

e [()is increasing:

If z;>z5, then F(z1)> F(z>)

4.3)
e  When z approaches —w, the limit of F{(z) exists and is equal to zero:

fim F(z)=0 (4.4)
e When z approaches +w, the limit of F{(z) exists and is equal to one:

lim F(z)=1 (4.5)

Z—>+0

Let D(z) be a real function of a numeric argument, defined for each real z as a
difference between FECDF{(.) and F{(.):

D(z)= FECDF (z)-F(z), forze R (4.6)

Then, in at least one of the points z; (for i=1, 2, ..., n) the function D(.) has a global
non-negative maximum M, not higher than 1, i.e.:

there exists jyq €{1,2,...,n} , such that D(z)< D(z‘,-m ) =M e[0;1], forze R 4.7

Proof of the lemma for the discrete maximum

Let the observations from the sample Z from (4.1) and their degrees of membership
be sorted in ascending order and renumbered in the sample Z°":
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Z.w)r/ — {(Zimrl , ,inm )] (z.zmrl , ﬂiwm )] - (Z:"()rl , lu,.;'orl )} (48)

where z/”" <z <...<z)”". Then the fuzzy empirical cumulative distribution function

constructed on (4.8) shall be:

FECDF*"(z) = S [t forze R (4.9)
k=1 k=1
Z}::{”I S z

Let an arbitrary (z‘/ - ;1',) from (4.1) be renumbered as (z,ﬂ"“” 7 ) from (4.8). The

denominators (4.9) and (4.2) are equal, because the sum of a finite number of addends are

sort

commutative. Since z;*"" =z, , then the condition (z», < z) in the sum of the numerator of
(4.2) is satisfied by (z‘/»,;z‘/»), if and only if the condition (z,‘"“” Sz) in the sum of the
sort sort sort

numerator of (4.9) is satisfied by (z, N7 ) Then, bearing in mind that 2" = x, , it

follows that the numerators of (4.9) and (4.2) are equal. It follows that the values of the
functions (4.2) and (4.9) coincide for the entire domain:

FECDF*" (z)= FECDF (z), forze R (4.10)

It follows from here that the values of the function D(.), derived from the non-
sorted sample (4.1) shall coincide with the values of the same function, but derived from
the sorted sample (4.8):

D*"(z)= FECDF*" (z) - F(z) = FECDF (z)- F(z)=D(z), forze R (4.11)

Let us analyse the finite set S of values of D**(.) in the points z/*" :

S =D (), D7 (257 ..o D (7)) (4.12)

where
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k=1

ot /< sort
Zk Zj

D\(H’/ ( \(1rl ) — i ﬂ)z'()"//i S()I” ( \()Vl) fOrj 1 2 (4'13)

The set S contains at least one or # at most different real numbers. Hence it always
has a largest element M. Let inw be the smallest running number of the element from
(4.12), whose value is M:

M =Dz ( sort ) > psort (Z;w)rl) fof” 1=l +1, imax +2, ...n
imax (4.14)
M = D% ( sort ) > DW”( ‘””) fOI’ i=1,2, Imax -1

max

Let us assume that there exists a real z*, different from the points z*" (i=1, 2, ...,
n) such that the value of D**"(.) is larger than M:

there exists z* € R \{ rort z3ort ...,z } such that D*"(z*)>M (4.15)

Case l:z* e (z‘,‘;“” ;+oo)

Then

M<D*"(z*) (according to the assumption (4.15))
=FECDF*"(z*) — F(z*) (according to (4.11))

=FECDF™(z,"") - F(z*) (because FECDF*"( 22! ) =FECDF*”"(z*)

for z* > z)" according to (4.9))
< FECDF™"(z5" ) — F(z°") (because F(z)”" )< F(z*) for z* > z)"

according to (4.3))
=D(z"") (according to (4.11))
<D( Z}’:)a:’ =M (according to (4.14))

It follows that A<M, hence for Case 1, the assumption (4.15) is not true.

Case2: z*e (2" 2% ), forj=1,2, ..., n—1

J
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. sort _ _sort
Case 2.1: z;" = z}7]

Then the open interval (z“i"” :

J

)is empty, and hence z* does not exist. So, in

Case 2.1, the assumption (4.15) is not true.

sort

Case 2.2: z}"" <z}%)
Then

M<D*"(z*)
=FECDF"(z%) — F(z¥)
=FECDF”"( Z_‘;”” ) — F(z*)

< F EC D F'(}rl( Z;:()fl ) _ F( Zv./\'()rl )

— D( Z',\;”” )
< D(z" =M

'max

(according to the assumption (4.15))
(according to (4.11))
(because FECDF*"( zy" ) =FECDF*"(z*)

for z)”" < z* < z}%{ according to (4.9))

(because F(z)”" )< F(z*) for z}”" < z* according
to (4.3))
(according to (4.11))

(according to (4.14))

It follows that A<M, hence for Case 2.2, the assumption (4.15) is not true.

Case 3: z* e (—oo; zi"””)

Then

M<D*"(z*)
=FECDF*""(z*) — F(z*)
=0 — F(z*)

IA
T
(=]

=0=1-1
<1-F(z)

(according to the assumption (4.15))

(according to (4.11))

(because FECDF**"(z*) =0 according to (4.9),
since the condition in the numerator

2" < 2% <z is never true as (4.8) is sorted))
(because F(z*)> 0 for any z*, according to (4.3)

and (4.4))

(because F(z;" )< 1 for any z*,
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according to (4.3) and (4.5))
=FECDF*"( 2" ) — F( z3°"") (because FECDF**"'( z"" ) =1 according to (4.9),

since the condition in the numerator z” < z3°"

is true as (4.8) is sorted)
=D(z,"") (according to (4.11))

<D(z" =M (according to (4.14))

'max

It follows that A<M, hence for Case 3, the assumption (4.15) is not true.

From Cases 1, 2.1, 2.2 and 3 it follows that the assumption (4.15) is not true. Then

there does not exist z* € R\ {zi‘"’”,z‘z‘"‘”,...,z‘,‘;"”} , such that D**"(z*)>M (4.16)
Then
Dsar{ (Z) < D.mr! (Z}\'()rt ) =M , for ze (—OO,' +OO) (4] 7)

The lower bound of the maximum A is:

M=D (z,‘“’x’ ) (according to (4.17))
> D(z;;"”) (according to (4.14))
=FECDF*"( 25" )y — F( z5°" (according to (4.11))
=1-F(z") (because FECDF**"'( 2" ) =1 according to (4.9))
> 1-1 (because F(z)”" )< | according to (4.3)
and (4.5))
=0

It follows that
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M>0 (4.18)

The upper bound of the maximum M is

M=D (z,f;;’x’ ) (according to (4.17))

=FECDF"( ") = F(Z™" (according to (4.11))

<1=F(z™M) (because FECDF*™(z;"") < 1
according to (4.9))

<1-0 (because F( z;if[:: )= 0 according to (4.3)
and (4.4))

=1

It follows that

M<1 4.19)

Let jmax be the number of the observations in the non-sorted sample (4.1), which
corresponds to the number of observation 7, in the sorted sample (4.8). Then according
to (4.17), (4.18) and (4.19)

there exists . €{1.2.....n}, such that D*" (z) < D" (z- ): M €[0;1], for ze R (4.20)

Jmax

But the functions D**(.) and D(.) coincide according to (4.11). Then, taking into
account (4.20) it follows that

there exists jq € {1.2,...,n} , such that D(z)< D(z,  )=M €[0/1], for ze R

which had to be proven.
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5. Theorem for calculation of Kolmogorov-Smirnov and Kuiper criteria over
fuzzy samples

Setup of the theorem for calculation of Kolmogorov-Smirnov and Kuiper
criteria over fuzzy samples

Let Z' and Z* be two samples containing #n; and n, observations from two
populations of a one-dimensional random variable respectively. The degree of
membership to the first population of the i-th observation from the first sample is
u e (0;1] , and the degree of membership to the second population of the i-th observation

from the second sample is £ € (0:1]:

7! :{(le,lull)}(Z%”ué),...,(zill,/vl’l’l )} 5.1
A :{(zlz,ylz),(z%,yzz),...,(zﬁz,yjz )} (5.2)
Let the distributions of the one-dimensional random variable in both populations be

approximated on the sample data with fuzzy empirical distribution functions CDF(.) and
CDF(.) as follows:

n n
CDF,(z)= ] w ]S u forze R (5.3)
k=1 k=1
z},iz
m 5 m
CDF,(z)= up > up, forze R 5.4)
Z/]%:Slz k=1

In (5.4), and throughout the section, the set of real numbers is denoted as R.

Let the Kolmogorov-Smirnov criterion and the Kuiper criterion for identity of the
distributions of both populations be defined as:

KS = sup(|CDF, - CDF,) (5.5)
R

Ku = sup (CDF; = CDF, )+ sup(CDF, — CDF;) (5.6)
R R
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296
Then KS and Ku always exist and belong to the interval [0; 1], and the suprema in
(5.5) and (5.6) are maximums. Each of those may be identified by calculating the

criterion in not more than (n;+ ny) points:

KS =
1 e 2 2[R
max 7AW RN Hii |
=12, | =) k=1 k=1 k=1
Z/iﬁzil z,%éz,l (57)
= max e[0,1]
n n hj n
L 2 Lo Lo
max Hi; Hie = Hie Hie
=12,m | g= k=1 k=1 k=1
z,%éziz zl{,gziz
(5.8)

=12, | k=1
1 1
szz, Zj/ sz
ny 2 ny 2 n 1 m 1
+ max M [ 2 M= X e [ 2k |€1051]
i=12,my | =) k=1 k=1 k=1
S22 ,A<,z
= “k ==

Proof of the theorem for calculation of Kolmogorov-Smirnov and Kuiper

criteria over fuzzy samples
1) Properties of the functions CDF\(.) and CDF(.), defined in (5.3) and (5.4).

Let z;>z; where z; and z; are two real numbers and CDF(.) are calculated at both z;

and z;:
I R
CDF, (Zl): DI DI7 (5.9)
k=1 k=1
z},S H
Vll l ﬂl l
CDF, (Zz)= kZ Hy kz#k (5.10)
=1 =
Z},S zy

Then for arbitrary (z,‘f, ,u,lc) from (5.1) the conditions in the numerators of (5.9) and

(5.10) are either satisfied when z} <z, < z;, or are not satisfied when z, <z <z} , or only
condition (5.9) is satisfied, when z, < z} < z, . It then follows that x4} is either part of the
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numerators of (5.9) and (5.10), or is not part of the numerators of (5.9) and (5.10), or is
only part of the numerator of (5.9). Taking into account the denominators of (5.9) and
(5.10) it follows that the function CDFj(.) is increasing;:

IfZ]>Zz, then CDF](Zl)Z CDF](Zz) (5‘] 1)

On the other hand, for an arbitrary (z}{, ,u,{) from (5.1) the condition in the

numerator of (5.10) would not be satisfied when z, <min{zll,z§,... z! } . Then the

2
numerator of (5.10) will be 0, hence (5.10) will be 0 and thus the limit of CDF(.) in—w
will exist and shall be 0:

lim CDF;(z,)=0 (5.12)

Zy =0

At the same time, for an arbitrary (z,{,,u,l) from (5.1) the condition in the

numerators of (5.10) shall be satisfied when z Zmax{zf,zé,...,z}n}. Then the numerator

of (5.10) coincides with the denominator and (5.10) equals to 1 and thus the limit of
CDF(.) in +w exists and equals to 1:

lim CDF (z)=1 (5.13)

21>+

In the same fashion, let the values of the function CDF»(.) be calculated for the real
numbers z>z;:

ny 5 ny 5
CDFy(z)= Y 1 | X 1 » (5.14)
k=1 k=1
2<z
<z
n 5 n s
CDF, (Zz): M | 2 Mk (5.15)
k=1 k=1
Z,%S 53

Then for an arbitrary (z,f, y,f) from (5.2) the conditions in the numerators of (5.14)

and (5.15) are either satisfied, when z7 <z, < z;; or not satisfied with z, <z <z7; or

only the condition in (5.14) is satisfied when z, < z7 < z,. It follows that z7 is either part
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of the numerators of both (5.14) and (5.15); or is not part of any of the numerators of
(5.14) and (5.15); or is only part of the numerator of (5.14). Taking into account the equal
denominators of (5.14) and (5.15) it follows that the function CDF>(.) is increasing:

If z1>z,, then CDF»(z1)> CDF(z2) (5.16)

On the other hand, for an arbitrary (z,f ,u,f) from (5.2) the condition in the

numerator of (5.15) would not be satisfied when z, <min{zlz,zzz,..‘,zﬁl} . Then the

numerator of (5.15) will be 0, hence (5.15) will be 0 and then the limit of CDF>(.) in —0
will exist and shall be 0:

lim CDF,(z,)=0 (5.17)
2y —>—®
At the same time, for an arbitrary (z,f, y,f) from (5.2) the conditions in the

numerator of (5.14) shall be satisfied when z, > max{zf,z%,...,zﬁl } Then the numerator

of (5.14) coincides with the denominator and (5.14) equals to 1 and the limit of CDF5(.)
in +oo exists and equals to 1:

lim CDEF, (zl)=1 (5.18)

21>+

2) Defining auxiliary functions

Let Di(.) be a real function of a numeric argument, defined for each real z as the
difference of CDF(.) from (5.3) and CDF(.) from (5.4):

Dl(z):CDFl (z)—CDFz(z),forzeR (5.19)

Let D(.) be a real function of a numeric argument, defined for each real z as the
difference of CDF>(.) from (5.4) and CDF(.) from (5.3):

D, (z):CDFz (z)—CDFl (z):—Dl (z) ,forze R (5.20)
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The lemma for the bounded suprema holds: the properties (5.11), (5.12) and (5.13)
for CDF(.) from (5.3) are the conditions (3.1), (3.2) and (3.3) that the lemma for the
bounded suprema requires; properties (5.16), (5.17) and (5.18) for CDF>(.) from (5.4) are
the conditions (3.4), (3.5) and (3.6) from the lemma for the bounded suprema. Then for
an arbitrary function CDF(.) and CDFx(.), corresponding to condition (3.1)-(3.6) of the
lemma for the bounded suprema, it can be proven that the suprema of Di(.) and Dy(.), as
well as their sum exist (according to the lemma for the bounded suprema):

there exists £} such that £ (CDF,CDF, ) = sup(CDF, — CDF, ) = sup (D, ) € [0; 1] (5.21)
R R
there exists £, such that , (CDF,CDF, ) = sup (CDF, - CDF ) = sup(D,) € [0;1]  (5.22)
R R
there exists /' such that

F(CDR,CDF,) = (sup(CDF] —CDF, )+ sup(CDF, —CDF, )) (5.23)
R R
= (sup(D1)+ sup(D, )j e[0:1]
R R

The auxiliary function D;(.) from (5.19) complies with the lemma for the discrete
maximum, since CDFy(.) from (5.3) is the very same fuzzy empirical distribution
function, constructed over fuzzy sample data from Z' defined in (5.1), defined in the
lemma for the discrete maximum by the function (4.2), constructed over fuzzy sample
data (4.1). The properties (5.16), (5.17) and (5.18) for CDF>(.) from (5.4) are the
properties (4.3), (4.4) and (4.5) of the lemma for the discrete maximum. Therefore the
maximum of Di(.) exists and coincides with the value of the function in at least one of the
points z},z3,...,z' of the fuzzy sample Z' defined in (5.1):

n

there exists . € {1.2,...,}, such that D, (z) < D, (z‘ ) =M, e[0;1], forze R (5.24)

Imax

Since the supremum of an arbitrary function, if it exists, is unique whereas the
maximum of each function (if the function exists) is the supremum, then from (5.21) and
(5.24) it follows that the supremum F; of Di(.) is always its maximum M,. Then:

there exists A such that F; = sup(D;)= M, = max (Dl (z,l )) e[0;1] (5.25)
R

i=12,...,n

Taking into account (5.19), (5.14) and (5.15), from (5.25) it follows:
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there exists £, such that /i = sup(D,)= max (CDFl (z,1 ) - CDF, (z,1 ))
R

i=1,2,..,n

(5.26)

The auxiliary function D;(.) from (5.20) complies with the lemma for the discrete
maximum, since CDF>(.) from (5.4) is the very same fuzzy empirical distribution
function, constructed over fuzzy sample data from Z* defined in (5.2), defined in the
lemma for the discrete maximum by the function (4.2), constructed over fuzzy sample
data (4.1). The properties (5.11), (5.12) and (5.13) for CDFi(.) from (5.3) are the
properties (4.3), (4.4) and (4.5) of the lemma for the discrete maximum?2. Therefore the
maximum of D,(.) exists and coincides with the value of the function in at least one of the

points z7,z3,...,z2 of the fuzzy sample Z* defined in (5.2):

)

there exists /o € {1,2,...,m} , such that D, (z)< D (z2 ): M, €[0;1], forze R (5.27)

<\ Jmax

Since the supremum of an arbitrary function, if it exists, is unique whereas the
maximum of each function (if the function exists) is the supremum, then from (5.22) and
(5.27) is follows that the supremum F> of Dy(.) is always its maximum M>. Then:

there exists £ such that F; = sup(Dz) =M, = max (D2 (z,2 )) € [0; 1] (5.28)
R )

i=12,..n

Taking into account (5.19), (5.20) and (5.15) and (5.28), from (5.6) it follows:

there exists F, such that /5 = sup(D, )= max (CDF2 (2,2) - CDF, (2,2 ))
R =1 /]

1,2,....n

n > n 2 n | n 1
= max | X g [ pi— X Mk | 2k
=12,.m | =] k=1 k=1 k=1
22 <72 )

Zk=E ZkSE

3) Proof of assumption (5.7)

(5.29)

The module in the Kolmogorov-Smirnov criterion (5.5) may be interpreted by the
auxiliary functions Di(.) from (5.19):
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Dl(z) for ZE{R’DI(Z)>0}
CDF, ()~ CDF, ()| =|Dy(z)|=] 0 for ze{R\D,(z)zo} (5.30)

-D(z) for :ze {R‘Dl (2) <0}

Equation (5.30) may be better represented if we use the auxiliary functions D;(.)
from (5.19)

z) for ze z)2>
|CDF, ()~ CDF, (z)| = Z((Z)) N Zeé;‘z((z; Zi (5.31)

v

Equation (5.31) is not traditional because if for some z* both distribution functions
are equal CDF (z *) =CDF, (Z *), then D, (z *) =0>0, and D, (z *) =0>0. However, it

is evident that even though the two conditions in (5.31) are true, the value of the
function ’CDFI (z*)-CDF (z *)’ in z* is 0, regardless of the functional expressions,

since Dy (z*)=D,(z*)=0.

The set of real numbers R may be divided into two disjoint sets
R :{R\Dl (2)20} and R;:{R\D, (z)<o0}:

R=R" UR’ ={R\D1(z)zo}u{R|Dl(z)<o} (5.32)

From (5.25) it follows that max (Dl (z})) €[0;1]. Then Di(z) >0 in at least one of

i=1,2,..,m
the points z{,2),...,z, of the fuzzy sample Z' defined in (5.1). Hence the set R*is non-

empty. For the set R we can analyse two cases.

Case 1: CDF,(z)>CDF,(z) for ze R

Here R; is an empty set because D (z) >0 for ze R. Then:

R=R©f"UR =R©" U =R (5.33)
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Evidently, the suprema of D;(.) in the sets R and R’* coincide because according

to (5.33) the sets coincide:

F = sup(D, ) = sup(D,) when for every z € R, CDF (z) > CDF, (z) (5.34)
R

0
R*

Case 2: there exists z* such that CDF; (z* ) <CDF, (z*)

Here R is not an empty set because it contains at least z"since D;(z")<0. Then:

Di(5)20>D(z,) for everyz € R and everyz, € R (5.35)

According to (5.25) the supremum F; of Di(.) in the set R always exists and
coincides with the maximum M, of the function, which also always exists. Evidently, the
suprema of Di(.) in the sets R and RY* coincide, because according to (5.35) the

maximum M, can never be in a point from R; :

F =sup(Dy)=sup(D,) when there exists 2 € R , where CDF; (z*) >CDF, (z*) (5.36)
R R[(H

Combining the results of (5.34) and (5.36) gives

R :szp(Dl):sup(D]) (5.37)

0+
R

In the same fashion as (5.32), the set of real numbers R may be divided into two
disjoint sets RY* = {R‘Dz (z)= 0} and R, = {R|D2 (z)< O} :

R=R§+uR5={R

Dy(z)20}U{R

D,(z)< o} (5.38)
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From (5.28) it follows that max (Dz (2,2 ))e[O; 1]. Then D,(z)>0 in at least one

i=12,..m

of the points zZ,z3,...,z> of the fuzzy sample Z* defined in (5.2). Hence the set RY*is

m

non-empty. For the set R; we can analyse two cases.

Case 1: CDF,(z)>CDF (z)for ze R

Here R; is an empty set because D, (z) >0 for = e R. Then:

R=R\"UR =R" U@ =R (5.39)

Evidently, the suprema of D»(.) in the sets R and RY* coincide because according to
(5.39) the sets coincide:

if CDF, (z) > CDH (Z) forallz € R, then F, = sup(D2 )= sup(Dz) (5.40)
R

0
RY*

Case 2: there exists z* such that CDF, (z* ) <CDH (z*)

Here R; is not an empty set because it contains at least z* since D»(z")<0. Then:

Dy(z)=20>D,(z,) for everyz e Ry* andeveryz, € Ry (5.41)

According to (5.28) the supremum F> of D(.) in the set R always exists and
coincides with the maximum M, of the function, which also always exists. Evidently, the
suprema of Dy(.) in the sets R and RY* coincide, because according to (5.41) the

maximum A, can never be in a point from R; :

if CDF, (z*) >CDHK (z*) for some z” € R, then F5, = sup(Dz) = sup(Dz) (5.42)

R "

Combining the results of (5.40) and (5.42) gives
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N =szlip(D2)=sup(D2) (5.43)

0
RY*

Using the sets introduced in (5.32) and (5.38), from (5.5) and (5.31) it follows that
if the Kolmogorov-Smirnov criterion exists, then it is:

KS = sup(’CDFl - CDF, ’) = max{sup(D, ). sup (D, )} (5.44)
R

0+ 0+
Ry Ry

From (5.37) and (5.43) it follows that

KS = max{sup(D, ), sup (D, )} = max{sup(D, ),slz:p(Dz )} =max{F,F,} (5.45)

R0* Ryt R

According to (5.21) the supremum F; of D,(.) always exists, and according to (5.22)
the supremum F3 of D»(.) always exists. The set {F , Fz} contains two real numbers and

hence there always exists a maximum element, as it is partially ordered by the relation
“smaller or equal” [Richmond, Richmond, 2009]. Hence the Kolmogorov-Smirnov
criterion always exists according to (5.44) and (5.45):

there exists KS = sup(|CDF, - CDF,|) = max{F, F; } (5.46)
R

According to (5.21) and (5.22) the supremum F of Di(.) and the supremum F> of
Dy(.) are always non-negative and not greater than 1. Therefore, the larger value of F; and
F> is also non-negative and not greater than 1:

there exists KS = max{F, Fz} €[0,1] (5.47)

Taking into account (5.26) and (5.29), from (5.47) it follows:
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there exists KS
nl 1 }’ll | n2 2 nz 5
max | Y, M= 2 M2 HE |,
=12m | g k=1 k=1 k=1
ol 2l
“/t7“1 "kihl
= max €[0,1]
S 2 /&2 < 1 /S
omax | Y g 7AW
=L2..m = k=1 k=1 k=1
2,2 o2
"/v =< A'/»'7‘7

which had to be proven.

4) Proof of assumption (5.8)
Taking into account (5.23), (5.20) and (5.22), from (5.6) it follows that the Kuiper

criterion always exists:

there exists Ku = sup(CDF, — CDF, ) + sup(CDF, — CDF, ) =
R R

(5.48)
=sup(Dy)+sup(D,)=F + F, €[0/1]
R R
Taking into account (5.26) and (5.29) it follows:
h+F
ny 1 ny 1 n 2 n 2
= max M | 2 k= . Hi Hii |+ (5.49)
=L2m| k= k=1 k=1 k=1
z} Sz,l ‘.]%Sz,!
R N N R R 0:1
+omax | Y g [ M= Y Mk e |€[0:1]
i=12,..m| =1 k=1 k=1 k=1
z%s:,z zllcgzlz

Finally, from (5.48) and (5.49) it follows that
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there exists Ku

n . n . " 5 ) 5 " 5 ) 5 n . n |
= max | ¥ o [ XM= X M | XM |+ max |3 g M= 2 e [ 2 |€10/1]
=120 | k=) k=1 k=1 k=1 =12,m | k=i k=1 k=1 k=1
Lol 2l 22 o2
“k==i “k =i “k =i “k==i

which we had to prove.

6. Corollary for calculation of Kolmogorov-Smirnov and Kuiper criteria over
rigid samples

Setup of the corollary for calculation of Kolmogorov-Smirnov and Kuiper
criteria over rigid samples

Let Z' and Z2 be two samples containing n; and n» observations from two
populations of a one-dimensional random variable respectively:

7! :{zll,zi,...,z,'q} (6.1)

72 = {zﬁ,zg,...,zjz} (6.2)

Let the distributions of the one-dimensional random variable in both populations be
approximated on the sample data with empirical distribution functions CDFi(.) and
CDF(.) as follows:

n

CDFy(z)= > 1 /m, forzeR (6.3)
oy
A<z

CDF,(z)= il n, ,forzeRr (6.4)
k=1
z‘Z,S,.

In (6.4), and throughout the section, the set of real numbers is denoted as R.

Let the Kolmogorov-Smirnov and the Kuiper criteria for identity of distributions of
both populations be defined as:

KS = sup(|CDF, = CDF,) (6.5)
R
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Ku = sup (CDF, = CDF, )+ sup(CDF, — CDF;) (6.6)
R R

Then KS and Ku always exists and belong to the interval [0; 1], and the suprema in
(6.5) and (6.6) are maximums. Each of those may be identified after calculating in not
more than (n;+ n2) points:

there exists KS = max €[0,1] 6.7)
. ny ny
there exists Ku = max L /m= > 1 /n |+
i=1,2,..,n k=1 k=1
ZI{SZ} Z/%SZ}
(6.8)

m n

+ max | X1 /mm= > 1 /n|€[0;1]
i=L2..m| =] k=1
z,%ﬁz,z z,{,ﬁz,z

Proof of the corollary for the calculation of Kolmogorov-Smirnov and Kuiper
criteria over rigid samples

The observations in the rigid sample Z' in (6.1) from the first population of the
one-dimensional random variable may be interpreted as fuzzy, but with a degree of
membership to the first population 2! =1, for i=1,2,..., n; :

(6.9)

7! = {le,zé,...,zllql } = {(zlll)(zél)(z;l 1)} = {(z}yf)(z%,ué)(z;l ,,u,l11 )}

The observations in the rigid sample Z* in (6.2) from the second population of the
one-dimensional random variable may be interpreted as fuzzy, but with a degree of
membership to the first population z? =1, for i=1,2,...,1n, :

(6.10)

72 {zf,zzz,...,zﬁz} = {(zlzl)(zgl)(zsz 1)} = {(Zf;zlz)(zg,uzz)(zi ,,uflz )}
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The empirical distribution function CDF(.) from (6.3) may be interpreted as fuzzy

empirical distribution function, but with a degree of membership to the first population
1 _ —
u =1, fori=1,2,...,m

= k=1
S

CH

CDF,(z)= i l/n, /Zl— z u i,u}(,forzeR (6.11)

k=1
1
Sz

The empirical distribution function CDF>(.) from (6.4) may be interpreted as fuzzy

empirical distribution function, but with a degree of membership to the first population
u?=1,fori=12,....n

l/nz— nz /Zl—

The theorem fr calculation of the Kolmogorov-Smirnov and Kuiper criteria over
fuzzy samples holds according to (6.9), (6.10), (6.11) and (6.12). Then:

Zz:,u,f,forZeR (6.12)

k=1

MS
~
o

CDF,(z) =

=~
I

m l[\’]5

N
1o
IA

there exists KS

k=
22! 6.13
= max * e[0/1] (6.13)

n n 2
= max | Y ot [D - uﬁ/Zﬂi + (6.14)

m 2 L) 2 n 1 n |
+ max | 3 M= 2 e [ 2 [€10:1]
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From (6.13) and (6.14), taking into account that u4' =1for i=1,2,..., n; and that
u? =1, fori=1,2,..., ny it follows that:

A m m n1
there exists KS =max{ max | Y. 1 /m— > 1 [ny |, max 1 /my— 3> 1 /m |r€[0,1]
i=1,2,..,n k=1 k=1 =12,..m| k=1 k=1
z}[ < z,l z,% Szll z,%ﬁz,z z}\, Sz,z

n m
there exists Ku= max | > 1 /m—= > 1 [m |+ max | > 1 [m= 3 1 [n |€[0/1]
k=1

i=12,..m

i
wLu
L
[
3
5
NP
Ms
A
IN 1 =
B,
b
N—e

= k
ETES zll z,,% <zl z/% <22 z

which we had to prove.

7. Discussion

The paper uses Kolmogorov-Smirnov and Kuiper criteria to compared the
difference between population distributions approximated over two fuzzy samples. The
procedures to calculate those criteria prove that the suprema in the standard formulae of
KS and Ku are maxima. Furthermore, it was demonstrated that these criteria are always
between 0 and 1, and they may be calculated in a given number of data points.

The objective of the paper is quick and reliable calculation of the Kolmogorov-
Smirnov (1.5) and Kuiper (1.6) criteria both in the case of rigid samples and fuzzy
samples. In the case of fuzzy samples (1.1) and (1.2), the formulae for KS (1.7) and Ku
(1.8) are proven in the case of FECDF (1.3) and (1.4). The calculation procedures are
much faster than the one-dimensional continuous optimization problems, which the
original formulae (1.5) and (1.6) suggest. On top, the offered procedure gives complete
certainty of the calculation. The paper also presented how these formulae would
transform to adapt to rigid samples. The rigid sample dependencies are very much
intuitive, they are well known in literature, but lack formal definition [Press et al., 2007],
which is another contribution of this paper.

Literature offers analytical techniques to construct the sample distribution
functions. However, those techniques are only available for rigid samples, and are also
asymptotic in nature. In the case of a single sample, they are able to test if that sample
was derived from a predefined distribution. In all other cases it is necessary to use
simulation modelling techniques, such as Bootstrap [Efron, Tibshirani, 1994], to
construct the distribution of the test statistic. This is especially true for the case of fuzzy
samples. Additionally, in the process of simulation modelling, the KS and Ku need to be
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calculated in each pseudo reality. If the calculation procedures are slow, difficult and
uncertain, then the whole simulation procedure to calculate pvawe of the test is also
compromised. The proposed procedures in this paper provide stability, speed and
reliability of calculation, hence immensely contributing to an optimal simulation
modelling procedure to conduct the tests.

References
Apostol, T., Mathematical Analysis. Second Edition. Addison-Wesley. p. 9, 1981.

Bohm, W., & Hornik, K. A Kolmogorov-Smirnov Test for r Samples. Research
Report Series / Department of Statistics and Mathematics, 105. WU Vienna University of
Economics and Business, Vienna, 2010

Chernobai, A., Rachev, S. T. & Fabozzi, F. .Composite Goodness-of-Fit Tests for
Left-Truncated Loss Samples, In Lee, C.-F. & Lee, J.-C. Handbook of Financial
Econometrics and Statistics. pp. 575-596, 2014

Groebner, D.F., Shannon, P.W., Fly, Ph. C. & Smith, K.D. Business Statistics — A
Decision-Making Approach. Eighth Edition, Prentice Hall, USA. pp. 770-788, 2011

Efron, B. & Tibshirani, R.J. An Introduction to the Bootstrap. CRC Press, 1994

Jin, X., Chow, T. W. S. Sun, Y., Shan, J. & Lau, B. C. P. Kuiper Test and
Autoregressive Model-Based Approach for Wireless Sensor Network Fault Diagnosis.
Wireless Networks 21, pp. 829-839, 2015

Lemeshko, Yu. & Gorbunova, A. A. Application and Power of the Nonparametric
Kuiper, Watson, and Zhang Tests of Goodness-of-Fit. Measurement Techniques 56(5)
(2013a) 465-475

Nikolova, N.D., Chai, S., Ivanova, S., Kolev, K. & Tenekedjiev, K., Bootstrap
Kuiper Testing of the Identity of 1D Continuous Distributions using Fuzzy Samples.
International Journal of Computational Intelligence Systems., 8(2), pp. 63-75, 2015

Press, W.H., Teukolski, S. A., Vetterling, W. T. & Flannery, B. P. Numerical
Recipes — The Art of Scientific Computing. Third Edition. Cambridge University Press,
2007

Richmond, B. & Richmond, Th. A Discrete Transition to Advanced Mathematics,
American Mathematical Society, 2009

Royden, H.L. & Fitzpatrick, P.M. Real Analysis. Fourth Edition. Pearson, p. 9,
2010



Calculaton of the Kolmogorov-Smirnov and Kuiper statistics 311

Rudin, W. Principles of Mathematical Analysis. Third Edition. Pp. 4, McGraw-
Hill, 1976

Stewart, J. Calculus. 8th Edition. Metric Version. pp. 62, Cengage Learning, 2016.

Thomas, G.B., Weir, M.D. & Hass, J.R. Thomas’ Calculus Early Transcendentals.
13th Edition. pp. 78, Pearson, 2014

Viertl, R. Statistical Methods for Fuzzy Data. John Wiley. UK, 2011



	Text1: 


